Элементы комбинаторики. События и их вероятности. Примеры решения задач (Часть 2)

Элементы комбинаторики. События и их вероятности. Примеры решения задач (Часть 2) Методы исследования Теория вероятностей. Примеры решения задач

Видео:Комбинаторика. Основные формулы (перестановки, сочетания, размещения) и примеры решения задач.Скачать

Комбинаторика. Основные формулы (перестановки, сочетания, размещения) и примеры решения задач.

Правила комбинаторики в задаче B6

Элементы комбинаторики. События и их вероятности. Примеры решения задач (Часть 2)

29 декабря 2011

Решая задачи по теории вероятностей, мы постоянно используем одну и ту же формулу, которая одновременно является классическим определением вероятности:

где k — число благоприятных исходов, n — общее число исходов (см. «Тест по теории вероятностей»).

И эта формула прекрасно работает до тех пор, пока задачи были легкими, а числа, стоящие в числителе и знаменателе — очевидными.

Однако последние пробные экзамены показали, что в настоящем ЕГЭ по математике могут встречаться значительно более сложные конструкции. Отыскание значений n и k становится проблематичным. В таком случае на помощь приходит комбинаторика. Ее законы работают там, где искомые значения не выводятся непосредственно из текста задачи.

В сегодняшнем уроке не будет строгих формулировок и длинных теорем — они слишком сложны и, к тому же, совершенно бесполезны для решения настоящих задач B6. Вместо этого мы рассмотрим простые правила и разберем конкретные задачи, которые действительно встречаются на ЕГЭ. Итак, поехали!

Число сочетаний и факториалы

Пусть имеется n объектов (карандашей, конфет, бутылок водки — чего угодно), из которых требуется выбрать ровно k различных объектов. Тогда количество вариантов такого выбора называется числом сочетаний из n элементов по k. Это число обозначается Cnk и считается по специальной формуле.

Обозначение:

Выражение n! читается как «эн-факториал» и обозначает произведение всех натуральных чисел от 1 до n включительно: n! = 1 · 2 · 3 · … · n.

Кроме того, в математике по определению считают, что 0! = 1 — подобный бред редко, но все же встречается в задачах по теории вероятностей.

Что дает нам эта формула? На самом деле, без нее не решается практически ни одна серьезная задача.

К сожалению, в школе совершенно не умеют работать с факториалами. Кроме того, в формуле числа сочетаний очень легко запутаться: где стоит и что обозначает число n, а где — k. Поэтому для начала просто запомните: меньшее число всегда стоит сверху — точно так же, как и в формуле определения вероятности (вероятность никогда не бывает больше единицы).

Для лучшего понимания разберем несколько простейших комбинаторных задач:

Задача. У бармена есть 6 сортов зеленого чая. Для проведения чайной церемонии требуется подать зеленый чай ровно 3 различных сортов. Сколькими способами бармен может выполнить заказ?

Тут все просто: есть n = 6 сортов, из которых надо выбрать k = 3 сорта. Число сочетаний можно найти по формуле:

Задача. В группе из 20 студентов надо выбрать 2 представителей для выступления на конференции. Сколькими способами можно это сделать?

Опять же, всего у нас есть n = 20 студентов, а выбрать надо k = 2 студента. Находим число сочетаний:

Обратите внимание: красным цветом отмечены множители, входящие в разные факториалы. Эти множители можно безболезненно сократить и тем самым значительно уменьшить общий объем вычислений.

Задача. На склад завезли 17 серверов с различными дефектами, которые стоят в 2 раза дешевле нормальных серверов. Директор купил в школу 14 таких серверов, а сэкономленные деньги своровал и купил дочке шубу из меха соболя за 200 000 рублей. Сколькими способами директор может выбрать бракованные серверы?

В задаче довольно много лишних данных, которые могут сбить с толку. Наиболее важные факты: всего есть n = 17 серверов, а директору надо k = 14 серверов. Считаем число сочетаний:

Красным цветом снова обозначены множители, которые сокращаются. Итого, получилось 680 комбинаций. В общем, директору есть из чего выбрать.

Как видите, число сочетаний из n по k считается достаточно просто. Проблема в том, что многие школьники никогда не работали с факториалами. Для них это новый и незнакомый математический объект, и для его освоения требуется некоторая тренировка.

https://www.youtube.com/watch?v=8-h9rPT08Hs

Хорошая новость состоит в том, что во многих задачах формулы Cnk оказывается вполне достаточно для нахождения ответа. Но есть и плохая новость: в тех редких случаях, когда нужны дополнительные правила, решение задачи резко усложняется. Эти правила мы сейчас и рассмотрим.

Закон умножения

Закон умножения в комбинаторике: число сочетаний (способов, комбинаций) в независимых наборах умножается.

Другими словами, пусть имеется A способов выполнить одно действие и B способов выполнить другое действие. Путь также эти действия независимы, т.е. никак не связаны между собой. Тогда можно найти число способов выполнить первое и второе действие по формуле: C = A · B.

Задача. У Пети есть 4 монеты по 1 рублю и 2 монеты по 10 рублей. Петя, не глядя, достал из кармана 1 монету номиналом 1 рубль и еще 1 монету номиналом 10 рублей, чтобы купить сигарету за 11 рублей у бабули в подземном переходе. Сколькими способами он может выбрать эти монеты?

Итак, сначала Петя достает k = 1 монету из n = 4 имеющихся монет номиналом 1 рубль. Число способов сделать это равно C41 = … = 4.

Затем Петя снова лезет в карман и достает k = 1 монету из n = 2 имеющихся монет номиналом 10 рублей. Здесь число сочетаний равно C21 = … = 2.

Поскольку эти действия независимы, общее число вариантов равно C = 4 · 2 = 8.

Задача. В корзине лежат 8 белых шаров и 12 черных. Сколькими способами можно достать из этой корзины 2 белых шара и 2 черных?

Всего в корзине n = 8 белых шаров, из которых надо выбрать k = 2 шара. Это можно сделать C82 = … = 28 различными способами.

Кроме того, в корзине имеется n = 12 черных шаров, из которых надо выбрать опять же k = 2 шара. Число способов сделать это равно C122 = … = 66.

Поскольку выбор белого шара и выбор черного — события независимые, общее число комбинаций считается по закону умножения: C = 28 · 66 = 1848. Как видим, вариантов может быть довольно много.

Закон умножения показывает, сколькими способами можно выполнить сложное действие, которое состоит из двух и более простых — при условии, что все они независимы.

Именно этой формулы многим не хватило для решения задачи B6 на пробном ЕГЭ по математике. Разумеется, существуют и другие методы решения, в которых комбинаторика не используется — и мы обязательно рассмотрим их ближе к настоящему экзамену. Однако ни один из них не сравнится по надежности и лаконичности с теми приемами, которые мы сейчас изучаем.

Закон сложения

Если закон умножения оперирует «изолированными» событиями, которые не зависят друг от друга, то в законе сложения все наоборот. Здесь рассматриваются взаимоисключающие события, которые никогда не случаются одновременно.

Например, «Петя вынул из кармана 1 монету» и «Петя не вынул из кармана ни одной монеты» — это взаимоисключающие события, поскольку вынуть одну монету и при этом не вынуть ни одной невозможно.

Аналогично, события «Выбранный наугад шар — белый» и «Выбранный наугад шар — черный» также являются взаимоисключающими.

Закон сложения в комбинаторике: если два взаимоисключающих действия можно выполнить A и B способами соответственно, то эти события можно объединить. При этом возникнет новое событие, которое можно выполнить X = A + B способами.

Другими словами, при объединении взаимоисключающих действий (событий, вариантов) число их комбинаций складывается.

Можно сказать, что закон сложения — это логическое «ИЛИ» в комбинаторике, когда нас устраивает любой из взаимоисключающих вариантов. И наоборот, закон умножения — это логическое «И», при котором нас интересует одновременное выполнение и первого, и второго действия.

Задача. В корзине лежат 9 черных шаров и 7 красных. Мальчик достает 2 шара одинакового цвета. Сколькими способами он может это сделать?

Если шары одинакового цвета, то вариантов немного: оба они либо черные, либо красные. Очевидно, что эти варианты — взаимоисключающие.

В первом случае мальчику предстоит выбирать k = 2 черных шара из n = 9 имеющихся. Число способов сделать это равно C92 = … = 36.

Аналогично, во втором случае выбираем k = 2 красных шара из n = 7 возможных. Число способов равно C72 = … = 21.

Осталось найти общее количество способов. Поскольку варианты с черными и красными шарами — взаимоисключающие, по закону сложения имеем: X = 36 + 21 = 57.

Задача. В ларьке продаются 15 роз и 18 тюльпанов. Ученик 9-го класса хочет купить 3 цветка для своей одноклассницы, причем все цветы должны быть одинаковыми. Сколькими способами он может составить такой букет?

По условию, все цветы должны быть одинаковыми. Значит, будем покупать либо 3 розы, либо 3 тюльпана. В любом случае, k = 3.

В случае с розами придется выбирать из n = 15 вариантов, поэтому число сочетаний равно C153 = … = 455. Для тюльпанов же n = 18, а число сочетаний — C183 = … = 816.

Поскольку розы и тюльпаны — это взаимоисключающие варианты, работаем по закону сложения. Получаем общее число вариантов X = 455 + 816 = 1271. Это и есть ответ.

Дополнительные условия и ограничения

Очень часто в тексте задачи присутствуют дополнительные условия, накладывающие существенные ограничения на интересующие нас сочетания. Сравните два предложения:

  1. Имеется набор из 5 ручек разных цветов. Сколькими способами можно выбрать 3 ручки для обводки чертежа?
  2. Имеется набор из 5 ручек разных цветов. Сколькими способами можно выбрать 3 ручки для обводки чертежа, если среди них обязательно должен быть красный цвет?

Чувствуете разницу? В первом случае мы вправе брать любые цвета, какие нам нравятся — дополнительных ограничений нет. Во втором случае все сложнее, поскольку мы обязаны выбрать ручку красного цвета (предполагается, что она есть в исходном наборе).

Очевидно, что любые ограничения резко сокращают итоговое количество вариантов. Ну и как в этом случае найти число сочетаний? Просто запомните следующее правило:

Пусть имеется набор из n элементов, среди которых надо выбрать k элементов. При введении дополнительных ограничений числа n и k уменьшаются на одинаковую величину.

https://www.youtube.com/watch?v=SLPrGWQBX0I

Другими словами, если из 5 ручек надо выбрать 3, при этом одна из них должна быть красной, то выбирать придется из n = 5 − 1 = 4 элементов по k = 3 − 1 = 2 элемента. Таким образом, вместо C53 надо считать C42.

Теперь посмотрим, как это правило работает на конкретных примерах:

Задача. В группе из 20 студентов, среди которых 2 отличника, надо выбрать 4 человека для участия в конференции. Сколькими способами можно выбрать этих четверых, если отличники обязательно должны попасть на конференцию?

Итак, есть группа из n = 20 студентов. Но выбрать надо лишь k = 4 из них. Если бы не было дополнительных ограничений, то количество вариантов равнялось числу сочетаний C204.

Однако нам поставили дополнительное условие: 2 отличника должны быть среди этих четырех. Таким образом, согласно приведенному выше правилу, мы уменьшаем числа n и k на 2. Имеем:

Задача. У Пети в кармане есть 8 монет, из которых 6 монет по рублю и 2 монеты по 10 рублей. Петя перекладывает какие-то три монеты в другой карман. Сколькими способами Петя может это сделать, если известно, что обе монеты по 10 рублей оказались в другом кармане?

Итак, есть n = 8 монет. Петя перекладывает k = 3 монеты, из которых 2 — десятирублевые. Получается, что из 3 монет, которые будут переложены, 2 уже зафиксированы, поэтому числа n и k надо уменьшить на 2. Имеем:

В обоих примерах я намеренно пропустил детали работы с факториалами — попробуйте выполнить все расчеты самостоятельно. Разумеется, для этих задач существуют и другие способы решения. Например, с помощью закона умножения. В любом случае, ответ будет один и тот же.

В заключение отмечу, что в первой задаче мы получили 153 варианта — это намного меньше, чем исходные C204 = … = 4845 вариантов. Аналогично, 3 монеты из 8 можно переложить C83 = … = 56 способами, что значительно больше 6 способов, которые мы получили в последней задаче.

Эти примеры наглядно демонстрируют, что введение любых ограничений значительно сокращает нашу «свободу выбора».

Видео:Математика без Ху!ни. Теория вероятностей, комбинаторная вероятность.Скачать

Математика без Ху!ни. Теория вероятностей, комбинаторная вероятность.

Элементы комбинаторики и теории вероятностей

Элементы комбинаторики. События и их вероятности. Примеры решения задач (Часть 2)

Основными понятиями в комбинаторики являются понятия размещения, сочетания и перестановки. Введем их.

Определение 1

Всякий упорядоченный набор имеющий $k$ элементов, взятых из наперед заданных $n$ элементов без повторений, будем называть размещением из $n$ по $k$.

Математически, такое размещение обозначается и вычисляется следующим образом:

$A_nk=frac{n!}{(n-k)!}$

Определение 2

Всякий упорядоченный набор имеющий $n$ элементов, взятых из наперед заданных $n$ элементов без повторений, будем называть перестановкой из $n$.

Математически, такая перестановка обозначается и вычисляется следующим образом:

$P_n=n!$

Определение 3

Всякий неупорядоченный набор имеющий $k$ элементов, взятых из наперед заданных $n$ элементов без повторений, будем называть сочетанием из $n$ по $k$.

Математически, такое сочетание обозначается и вычисляется следующим образом:

$C_nk=frac{n!}{(n-k)!k!}$

Основные понятия теории вероятностей

Основными понятиями теории вероятностей являются понятия события и вероятности события.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Определение 4

Событием будем называть любое утверждение, которое может как произойти, так и не произойти.

Обычно события обозначаются большими английскими буквами.

Пример: $A$ – выпадение числа $6$ на кости.

В связи с тем, что событие может иметь две вариации исхода («произошло» и «не произошло») мы сталкиваемся с понятие вероятности такого события. Это понятие имеет $4$ основных определения.

Классическое определение.

Классическое определение связано с такими неопределяемыми понятиями как равновозможность и элементарность события. Интуитивно их можно понять на следующих примерах:

Равновозможность: При подбрасывании монеты она может упасть как аверсом, так и реверсом независимо от внешних условий. То есть можно сказать что вероятность выпадения одной или другой стороны по сути одинакова.

https://www.youtube.com/watch?v=k8B77jguqU8

Элементарность события: Если на кости выпадет число $4$, то это означает, что числа $1, 2, 3, 5$ и $6$ уже не выпали.

Определение 5

Вероятностью события будем называть отношения числа $n$ равновозможных элементарных событий исходного события $B$ ко всем элементарным событиям $N$.

Математически это выглядит следующим образом:

$P(B)=frac{n}{N}$

Геометрическое определение.

Геометрическое определение применяется для случая, когда количество равновозможных событий будет бесконечно. Здесь, для введения геометрического определения рассмотрим следующий пример.

Для игры дартс берем круг площадью $S$ и разбиваем его на несколько кругов. Какова вероятность, что дротик попадет в центральный круг? (Исключим здесь случаи полного непопадания в поле).

Очевидно что равновозможных событий здесь будет бесконечно (как и общих событий) так как круг содержит в себе бесконечное число точек.

Пусть площадь центрального круга равняется $s$. Тогда мы сталкиваемся с геометрическим определением вероятности такого события:

$P(B)=frac{s}{S}$

Статистическое (частотное) определение.

Классическое определение довольно часто не учитывает всех возможностей.

Рассматривая даже классический пример с бросанием кости мы пренебрегаем возможностью, что не выпадет никакого из шести чисел (кубик просто «остановится» на уголке).

Поэтому вводят следующее определение вероятности, учитывающее все возможности. Рассматриваем $N$ наблюдений. Пусть нужное нам событие при этом выпало $n$ раз. Тогда

$P(B)=lim_{N→∞}⁡frac{n}{N}$

Аксиоматическое определение.

Данное определение задается с помощью аксиоматики Колмогорова.

Пусть $X$ — пространство всех элементарных событий. Тогда

Определение 6

Вероятностью события $B$ будем называть такую функцию $P(B)$, которая удовлетворяет следующим условиям:

  1. Данная функция всегда неотрицательна,
  2. Вероятность того, что произойдет хотя бы одно из попарно несовместных событий равняется сумме их вероятностей.
  3. Функция всегда меньше или равна $1$, причем $P(X)=1$.

Пример задач

Пример 1

В корзине лежат $10$ разных зерен для высадки цветов. Нам нужно посадить всего $4$ так как у нас есть всего $4$ горшка. Сколькими способами мы можем посадить цветы в эти горшки?

Решение.

Вначале нам нужно вытащить из корзины $4$ наугад попавшихся зерна. То есть здесь мы имеем дело с сочетанием из $10$ зерен по $4$.

Получаем:

$C_nk=frac{10!}{(10-4)!4!}=frac{10!}{6!4!}=frac{7cdot 8cdot 9cdot 10}{1cdot 2cdot 3cdot 4}=210$

Четыре же зерна посадить в $4$ горшка можно

$P_4=4!=24$

способами.

Для нахождения окончательного результата нужно перемножить эти два, получим:

$210cdot 24=5040$

Ответ: $5040$.

Пример 2

Найти вероятность того, что наугад вытащенная из колоды карта будет пиковой масти (сумма карт в колоде кратна $4$-м).

Решение.

Так как количество карт кратно четверке, то пусть всего карт будет $4k$. Тогда каждой масти карт будет $k$ штук (так как мастей $4$ и их количество одинаково).

При решении этой задачи будем использовать определение $5$. Во введенных нами обозначениях, получим что в определении $5$ мы будем иметь

$N=4k,n=k$

Следовательно

$P=frac{k}{4k}=frac{1}{4}$

Ответ: $frac{1}{4}$.

🔥 Видео

Теория вероятностей | Математика TutorOnlineСкачать

Теория вероятностей | Математика TutorOnline

Математика без Ху!ни. Теория вероятностей. Схема БернуллиСкачать

Математика без Ху!ни. Теория вероятностей. Схема Бернулли

02 Комбинаторика ЗадачиСкачать

02  Комбинаторика  Задачи

Комбинаторика: перестановка, размещение и сочетание | Математика | TutorOnlineСкачать

Комбинаторика: перестановка, размещение и сочетание | Математика | TutorOnline

Решение задач по теории вероятностей | Часть 1Скачать

Решение задач по теории вероятностей | Часть 1

Элементы комбинаторики. Правило суммы. Правило произведения. 9 класс.Скачать

Элементы комбинаторики. Правило суммы. Правило произведения. 9 класс.

Вся теория вероятностей для экзамена за 20 минут. ЕГЭ профильный, Базовый, ОГЭСкачать

Вся теория вероятностей для экзамена за 20 минут. ЕГЭ профильный, Базовый, ОГЭ

Решение задач на теорию вероятности. Практическая часть. 9 класс.Скачать

Решение задач на теорию вероятности. Практическая часть. 9 класс.

10 класс, 49 урок, Случайные события и их вероятностиСкачать

10 класс, 49 урок, Случайные события и их вероятности

Комбинаторика. Комбинаторные задачи. 10 класс.Скачать

Комбинаторика. Комбинаторные задачи. 10 класс.

Решение задач на теорию вероятности. Практическая часть. 9 класс.Скачать

Решение задач на теорию вероятности. Практическая часть. 9 класс.

КОМБИНАТОРИКА теория вероятности математикаСкачать

КОМБИНАТОРИКА теория вероятности математика

Решение задач на теорию вероятности. Практическая часть. 9 класс.Скачать

Решение задач на теорию вероятности. Практическая часть. 9 класс.

Классическая схема теории вероятностей. Комбинаторика. Часть 2Скачать

Классическая схема теории вероятностей. Комбинаторика. Часть 2

Основы комбинаторикиСкачать

Основы комбинаторики

Теория вероятностей. Лекция 1. Часть 2. Комбинаторика. Перестановки. Размещения.Скачать

Теория вероятностей. Лекция 1. Часть 2. Комбинаторика. Перестановки. Размещения.

18+ Математика без Ху!ни. Теория вероятностей, часть 1.Скачать

18+ Математика без Ху!ни. Теория вероятностей, часть 1.
Поделиться или сохранить к себе: